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The generalization of the Boltzmann and Enskog kinetic equations to allow
inelastic collisions provides a basis for studies of granular media at a fundamen-
tal level. For elastic collisions the significant technical challenges presented in
solving these equations have been circumvented by the use of corresponding
model kinetic equations. The objective here is to discuss the formulation of
model kinetic equations for the case of inelastic collisions. To illustrate the
qualitative changes resulting from inelastic collisions the dynamics of a heavy
particle in a gas of much lighter particles is considered first. The Boltzmann�
Lorentz equation is reduced to a Fokker�Planck equation and its exact solution
is obtained. Qualitative differences from the elastic case arise primarily from the
cooling of the surrounding gas. The excitations, or physical spectrum, are no
longer determined simply from the Fokker�Planck operator, but rather from a
related operator incorporating the cooling effects. Nevertheless, it is shown that
a diffusion mode dominates for long times just as in the elastic case. From the
spectral analysis of the Fokker�Planck equation an associated kinetic model is
obtained. In appropriate dimensionless variables it has the same form as the
BGK kinetic model for elastic collisions, known to be an accurate representa-
tion of the Fokker�Planck equation. On the basis of these considerations,
a kinetic model for the Boltzmann equation is derived. The exact solution for
states near the homogeneous cooling state is obtained and the transport proper-
ties are discussed, including the relaxation toward hydrodynamics. As a second
application of this model, it is shown that the exact solution for uniform shear
flow arbitrarily far from equilibrium can be obtained from the corresponding
known solution for elastic collisions. Finally, the kinetic model for the dense
fluid Enskog equation is described.

KEY WORDS: Granular flow; kinetic theory; Fokker�Planck equation;
Boltzmann equation; Enskog equation; kinetic model.
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I. INTRODUCTION

The primary feature of granular media differentiating them from simple
atomic fluids is inelastic collisions.(1) Standard kinetic equations (e.g.,
Boltzmann and Enskog equations) can be adapted to incorporate this
feature and provide the theoretical basis for studying the dynamical proper-
ties of granular media.(2�4) However, the complexity of these non-linear
integro-differential equations in the six dimensional phase space places
severe limitations on applications just as for elastic collisions. In the latter
case, kinetic models have played an important role in providing practical
access to information about nonequilibrium states that would not be
available otherwise.(5) The spirit of a kinetic model is to retain essential
features of the underlying kinetic equation such as macroscopic balance
equations and stationary states, while otherwise introducing simplifications
that admit more detailed analysis. In constructing a kinetic model there is
always some subjective compromise between quantitative accuracy and
simplicity, usually dictated by the objectives of the application. Kinetic
models originate from approximations to the collision operator. For elastic
collisions they typically preserve the invariance properties associated with
conservation laws, but otherwise have a single characteristic frequency sup-
planting the remaining complex spectrum for microscopic excitations.
Although they are crude in this latter respect, they contain the essential
ingredients of a collision operator generating two widely separated time
scales: that for hydrodynamics and that for kinetics.

The introduction of kinetic models for inelastic collisions proceeds in
much the same way.(3, 6�8) Although energy is no longer conserved, the
kinetic model is nevertheless constrained to yield the corresponding macro-
scopic balance equation. Similarly, the spectrum for kinetic excitations is
collapsed to a single characteristic feature. An important difference in the
underlying kinetic equation, however, is that no homogeneous stationary
state exists. Instead, there is a homogeneous cooling state (HCS) such that
the thermal velocity is monotonically decreasing in time. The inverse cool-
ing rate introduces a new time scale not present for elastic collisions and
requires some special care in constructing the kinetic model. The objective
here is to analyze such questions in detail and to suggest simple kinetic
models appropriate for the study of granular flow in complex states.

The most important effects of inelastic collisions are illustrated in the
next two sections for the tagged particle dynamics of a heavy particle in a
gas of much lighter particles. In this case, the Boltzmann�Lorentz kinetic
equation can be reduced exactly to a Fokker�Planck equation with drift
and diffusion coefficients depending on the time dependent temperature of
the surrounding fluid in its HCS and on the coefficient of normal restitution
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for collisions between the Brownian particle and fluid particles. The spec-
trum of the collision operator is known and the exact solution can be
constructed to demonstrate the qualitative changes due to inelastic colli-
sions and for tests of appropriate kinetic models. For example, it is found
that the usual fluctuation-dissipation relation or detailed balance condition
does not hold for inelastic collisions. As a consequence, the final quasi-
stationary state approached for long times is a Maxwellian at a different
temperature from that of the surrounding gas due to the inability of the
tagged particle to adjust exactly to the cooling of the gas. Nevertheless, in
appropriate reduced variables accounting for this time dependent cooling,
the spectrum of the Fokker�Planck equation is similar to that for elastic
collisions. There are an infinite number of discrete kinetic modes and a
single ``hydrodynamic'' diffusive mode. All of the kinetic modes are shifted
by a small amount due to the cooling rate. This small quantitative effect
on the spectrum is due to the cooling and requires special attention when
constructing a kinetic model based on simplification of the spectrum, as
discussed in Section III. The hydrodynamic pole is always smaller than
those for the kinetic modes so for asymptotically long times the dynamics
is dominated by simple diffusion. This is a clear demonstration of the exist-
ence of hydrodynamics in a system with inelastic collisions, for all values
of the restitution coefficient, and gives a precise description of the approach
to the hydrodynamic stage for arbitrary initial conditions. In real time,
however, the separation of hydrodynamic and kinetic modes is algebraic
rather than exponential.

With the spectrum of the Fokker�Planck equation known, it is
possible to test the application of kinetic models for approximating kinetic
equations. In the simplest model for the case of elastic collisions, the entire
spectrum for the kinetic modes is collapsed to a single infinitely degenerate
pole located at the average collision frequency, leading to the BGK kinetic
model.(5) In Section III it is shown that this approach applies as well to the
case of inelastic collisions, but only after the time dependence of the fluid
temperature has been removed by appropriate scaling. In dimensionless
units the BGK kinetic model is regained with only a renormalization of the
collision frequency and a non-linear transformation of the time scale. As
this model is known to be a good approximation for elastic collisions, we
confirm its validity for the case of inelastic collisions as well. In particular,
the detailed description of ``aging to hydrodynamics'' is the same as for the
elastic case, with the same condition that the wavevector not exceed a criti-
cal value. In this way, it is verified that the approach to hydrodynamics for
all values of the restitution coefficient is preserved by the kinetic model.

In Section IV these results are used to motivate and guide construction
of a kinetic model for the Boltzmann equation for a low density gas with
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inelastic collisions. The result extends and clarifies previous studies(3, 6�8) by
a more detailed attention to the choice of representation for the collision
operator whose spectrum is being approximated. The model kinetic equa-
tion yields the same balance equations for mass, energy, and momentum as
the Boltzmann equation, and it supports the same HCS solution as the for-
mal asymptotic state for arbitrary homogeneous initial conditions. The
HCS distribution and a constant collision frequency must be supplied as
input for the model. The HCS distribution is known to good approxima-
tion from the Boltzmann equation using a Sonine polynomial expansion
about a Maxwellian, and the collision frequency can be chosen to yield the
Boltzmann shear viscosity which also has been calculated recently from a
similar expansion.(8) To illustrate its application, the solution to the corre-
sponding linearized kinetic model equation is obtained for initial condi-
tions close to the HCS. The spectrum consists of damped single particle
excitations and branch cuts corresponding to kinetic modes that decay on
the time scale of the inverse collision frequency. In addition, there are d+2
hydrodynamic modes (d is the dimension of the system) just as for a gas
with elastic collisions which dominate for long times and large wavelengths.
Again, the separation of hydrodynamic and kinetic modes is algebraic
rather than exponential in time. The approach to hydrodynamics is
described in more detail for transverse excitations where it is possible to
map the inelastic case onto known exact results for the elastic one. This
result shows the relaxation of fast modes to slow hydrodynamics including
wavelengths shorter than those required for the Navier�Stokes limit, and
for arbitrary value of the restitution coefficient. As a second illustration the
non-linear kinetic model is applied to uniform shear flow arbitrarily far
from equilibrium. It is observed that the equation for the stationary solu-
tion has the same form as that for elastic fluids in the presence of a thermo-
stat, with the dissipation due to inelastic collisions playing the same role as
the thermostat. In the latter case, the effect of the inelastic collisions for
fixed restitution coefficient is controlled by the temperature which adjusts
autonomously to yield a stationary state with viscous heating and dissipa-
tion balanced. This correspondence allows direct translation of extensive
previous studies for non-dissipative systems to granular flows. The exact
distribution function, shear rate dependence of the temperature, and
viscosity are given as examples.

Finally, the generalization of this kinetic model to one for the dense
fluid revised Enskog kinetic equation(9) is given in Section V. The form
follows from the considerations of Section IV and the recent formulation of
an Enskog kinetic model for the elastic case.(10, 11) The primary results of
this work and the implications to be drawn from them are summarized in
the last section.
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II. TAGGED PARTICLE MOTION

In this section, some of the most important new features of kinetic
theory for systems of particles colliding inelastically are illustrated for the
special case of a heavy tagged particle in a gas of lighter particles. The
Boltzmann�Lorentz kinetic equation is expressed as a Fokker�Planck
equation in the limit of small mass ratio, and its exact spectrum is
described. Several qualitative differences from the case of elastic collisions
are noted. These results will be used in the next section to guide the con-
struction of an appropriate kinetic model.

We consider a tagged particle of mass m in a low density gas whose
particles have mass mg . All particles are smooth hard spheres (d=3) or
disks (d=2). Collisions between the tagged particle and fluid particles are
characterized by a constant coefficient of normal restitution :, while that
for collisions among fluid particles will be denoted by :g . Both coefficients
have values 0<:, :g�1, with the largest value corresponding to the elastic
limit.

The Boltzmann�Lorentz equation for the probability density F(r, v, t)
of the tagged particle is

(�t+v } {) F=J[r, v, t | F, f ] (2.1)

where the collision operator J is given by refs. 2�4

J[r, v, t | F, f ]=_d&1
0 | dv1 | d _̂ 3(g } _̂)(g } _̂)

_[:&2F(r, v$, t) f (r, v$1 , t)&F(r, v, t) f (r, v1 , t)] (2.2)

Here f (r, v, t) is the one-particle distribution for the surrounding gas, 3 is
the Heaviside step function, _̂ is a unit vector pointing from the center
of gas particle 1 to the center of the tagged particle at contact, and
_0=(_+_g)�2, where _ and _g are the diameters of the tagged particle and
the gas particles, respectively. The precollisional or restituting velocities v$
and v$1 are given by

v$=v&
(1+:) 2
:(1+2)

(g } _̂) _̂, v$1=v1+
(1+:)

:(1+2)
(g } _̂) _̂ (2.3)

In the above expressions g=v&v1 and 2 is the mass ratio of a gas particle
to the tagged particle, 2=mg �m.
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The gas distribution f (r, v, t) must be a solution of the Boltzmann
equation for inelastic particles. Here we will consider that the gas is in the
HCS that is described by a solution of the form(2):

fH(v, t)=ngv&d
g (t) , \ v

vg(t)+ (2.4)

where vg(t) =[2kBTg(t)�mg]1�2 is the thermal velocity of the gas particles.
The number density ng and the temperature of the gas Tg(t) are defined in
the usual way,

ng=| dv fH(v, t),
d
2

ngkBTg(t)=| dv
1
2

mgv2fH(v, t) (2.5)

As indicated by Eq. (2.4), all the time dependence of the distribution fH

takes place through the temperature of the gas. An evolution equation for
it is easily obtained from the Boltzmann equation,

dTg

dt
=&`(Tg) Tg (2.6)

where the cooling rate `(Tg) is given by

`(Tg)=(1&:2
g) ng_d&1

g \kBTg

mg +
1�2

|~ (2.7)

with |~ being a numerical dimensionless factor,

|~ =
?(d&1)�2

21�2d1 ((d+3)�2) | dv | dv1 g3,(v) ,(v1) (2.8)

The solution of Eq. (2.6) is

Tg(t)=Tg(0) \1+
`[Tg(0)]

2
t +

&2

(2.9)

The above applies for arbitrary masses of the tagged and gas particles.
For the special case of a massive tagged particle in a freely evolving
inelastic dilute gas, the Boltzmann�Lorentz equation simplifies to a
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Fokker�Planck equation, following a formal expansion to leading order in
the mass ratio 2 for 2 � 0:

(�t+v } {) F(r, v, t)=L[Tg(t)] F(r, v, t) (2.10)

L(Tg)=#e(Tg) a0(:)
�

�v
} _v+

kBTg

m
a0(:)

�
�v& (2.11)

where #e(Tg) is the friction constant for the elastic limit, except as a func-
tion of the cooling temperature,

#e(Tg)=
4?(d&1)�2_d&1

0 ng21�2

d1 (d�2) \2kBTg

m +
1�2

(2.12)

All effects of inelastic collisions among the gas particles appear through the
time dependence of the gas temperature given by Eq. (2.6). The inelasticity
of collisions between the tagged particle and gas particles shows up
through the function

a0(:)=
1+:

2
(2.13)

For the case of elastic collisions, the coefficient of the second derivative in
Eq. (2.11) is equal to kBTg �m times that of the first derivative, a fluctua-
tion-dissipation relation. In the present case, this relation is violated by the
additional factor of a0(:). The derivation of Eq. (2.10) follows from an
extension of the standard method for elastic particles(12, 13) and is outlined
in Appendix A. An important difference for the inelastic case is the require-
ment of two limits, 2 � 0 and :g � 1, with

=0#
`[Tg(t)]

2a0(:) #e[Tg(t)]
=

1&:2
g

4 - 2 a0(:) 2 \_g

_0+
d&1

� constant<1 (2.14)

Thus, in addition to small mass ratio the gas dissipation must be weak
(there are no limitations on : for the tagged particle, however). To under-
stand this, define a tagged particle temperature T (t) from its average
kinetic energy by

d
2

kBT=| dr | dv
1
2

m(v&u)2 F (2.15)

where

u(t)=| dr | dv vF (2.16)
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is the average velocity of the tagged particle. Then, taking the average of
the Fokker�Planck equation with respect to v and v2 gives

�t u=&#e(Tg) a0(:) u (2.17)

[�t+2#e(Tg) a0(:)(1&=0)]
T (t)
Tg(t)

=2#e(Tg) a2
0(:) (2.18)

The first of these equations shows that #ea0 is the decay rate for the
average velocity of the tagged particle due to collisions with the gas. The
second velocity moment, or T (t), has a decay rate of 2#ea0 . This provides
the interpretation of =0 in Eq. (2.14) as the ratio of cooling rate for the gas
relative to that for the tagged particle. Consequently, &2#ea0(1&=0) in
Eq. (2.18) represents the difference between these two decay rates, and
expresses the ``frustrated'' thermalization of the tagged particle due to the
cooling of the surrounding gas. The solutions of Eqs. (2.17) and (2.18) have
the forms

u(t)=[U(t)]1�2(1&=0) u(0) (2.19)

T (t)
Tg(t)

=U(t)
T (0)
Tg(0)

+a0(:)(1&=0)&1 [1&U(t)] (2.20)

where

U(t)=\1+
`[Tg(0)]

2
t+

&2(1&=0)�=0

(2.21)

This is similar to the algebraic decay of Tg(t) given in Eq. (2.9) except with
an exponent reflecting the differences in the decay of the two temperatures.
The coefficients in the 2 expansion depend on the ratio of temperatures for
the tagged and gas particles (see Appendix A). For =0�1, T (t)�Tg(t) grows
without bound while for =0<1 it approaches the constant value

lim
t � �

T (t)
Tg(t)

=a0(:)(1&=0)&1 (2.22)

This is the origin of condition (2.14).
Although Eq. (2.22) implies that the cooling rates for the gas and tagged

particles approach the same value, the respective asymptotic temperatures
can be different. Thus for the choice (1&:)�2<=0<1 the asymptotic tem-
perature of the tagged particle is greater than that for the surrounding gas,
while for 0<=0<(1&:)�2 the tagged particle temperature is less than that
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for the gas. Also, the approach to the asymptotic value is algebraic rather
than exponential in time,

T (t) � a0(:)(1&=0)&1 Tg(t)

=a0(:)(1&=0)&1 Tg(0) \1+
`[Tg(0)]

2
t+

&2

(2.23)

The asymptotic difference between T and Tg arises from two competing
effects. On the one hand, the inelasticity of the collisions between the
tagged and gas particles tends to decrease the tagged particle temperature.
Thus, even if the gas particles are elastic (=0=0), T�Tg � a0(:)<1. On the
other hand, the cooling of the gas particles tends to make T lag behind Tg ,
despite the fact that the relaxation rate of T, 2#e(Tg) a0(:), is assumed to
be larger than the cooling rate of the gas particles, `(Tg). Consequently,
even if the tagged particle collides elastically with the gas particles (a0=1),
T�Tg � (1&=0)&1>1. Both competing effects exactly balance each other
only if =0=(1&:)�2.

In the absence of external forces or boundary conditions there is no
stationary solution to the Fokker�Planck equation, due to the explicit time
dependence of the gas temperature Tg(t). However, there is a HCS
analogous to that for the gas, Eq. (2.4),

FH(v, t)=0&1v&d
0 (t) 8(v�v0(t)) (2.24)

where 0 is the volume of the system and v0(t)=[2kBT (t)�m]1�2 is the
thermal velocity for the tagged particle. Substitution of Eq. (2.24) into
Eq. (2.10) gives

&
1

2T (t)
�T (t)

�t
�

�v
} [vFH(v, t)]=L[Tg(t)] FH(v, t) (2.25)

Using Eq. (2.18) this can be rearranged as

�
�v

} _v+
kBT (t)

m
�

�v& FH(v, t)=0 (2.26)

with the solution

FH(v, t)=0&1 v&d
0 (t)
?d�2 e&v2�v2

0(t) (2.27)

The HCS for the tagged particle is a Maxwellian, just as in the case of
elastic collisions, but as a function of the time dependent tagged particle
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temperature. The importance of this special solution lies in the fact that the
general solution approaches FH(v, t) for large times. Consider first the case
of homogeneous initial conditions. The general solution to the Fokker�
Planck equation can be obtained in the same way as that for elastic colli-
sions(13, 14):

F(v, t)=| dv$ G(v, t; v$, 0) F(v$, 0) (2.28)

where

G(v, t; v$, 0)={ (1&=0) m
2?kBTg(t) a0(:)[1&U(t)]=

d�2

_exp {&
(1&=0) m[v&w(t) v$]2

2kBTg(t) a0(:)[1&U(t)]= (2.29)

Here w(t)#[U(t)]1�2(1&=0) governs the decay of the average velocity of the
tagged particle, cf. Eq. (2.19). This has a form similar to that for the elastic
case, although here the relevant ``temperature'' is Tg(t) a0(:)(1&=0)&1.
However, from Eq. (2.20) it follows that this quantity agrees with the
actual temperature of the tagged particle in the limit of asymptotically
long times. Qualitatively, an initially sharp distribution peaked about v$
shifts towards the origin on a time scale of the velocity relaxation,
[a0(:) #e[Tg(t)]]&1. In addition, the width of the distribution broadens
(thermalization of the particle) on the time scale [2(1&=0) a0(:)_
#e[Tg(t)]]&1. As the tagged particle relaxes toward the gas temperature
the latter changes, leading to a slowing of the process by the factor 1&=0 .
As indicated in (2.21) the functional dependence for both processes is
algebraic in time, contrasting the exponential decay for the case of elastic
collisions.

It is instructive for the purpose of kinetic modeling in the next section
to repeat the discussion of velocity relaxation from a different perspective
by analyzing the spectrum of the Fokker�Planck operator. The operator L

defined in Eq. (2.11) has a discrete spectrum with eigenvalues labelled by
d positive or null integers n=(n1 ,..., nd ):(13, 15)

*n[Tg(t)]=&a0(:) #e[Tg(t)] :
d

i=1

n i (2.30)

For an elastic gas (:g=1) the eigenvalues are time independent and they
represent the possible decay rates for the tagged particle distribution func-
tion. On the other hand, for inelastic collisions the relationship of the
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eigenvalues to the modes of F(v, t) is not so direct due to the additional
time dependence of the eigenvalues and eigenfunctions through the tem-
perature of the bath. This difficulty can be removed by transforming the
Fokker�Planck equation to one with constant coefficients using the dimen-
sionless velocity, distribution function, and time,

v*=
v

v̂0(t)
, F*(v*, t*)=0v̂d

0(t) F(v, t), t*(t)=a0(:) |
t

0
dt$ #e[Tg(t$)]

(2.31)

where v̂0(t)#[2kB Tg(t) a0(:)�m(1&=0)]1�2. Then Eq. (2.10) for homoge-
neous states becomes a differential equation with time independent coef-
ficients,

�t*F*=&=0

�
�v*

} (v*F*)+L*F* (2.32)

where

L*=
�

�v*
} \v*+

1&=0

2
�

�v*+ (2.33)

The Fokker�Planck operator L* has the same spectrum as L in the
appropriate dimensionless form:

*n*=& :
d

i=1

ni (2.34)

However, the scaling of the velocity and distribution function to obtain
constant coefficients has generated a new velocity derivative operator on
the right side of Eq. (2.32) which has a positive spectrum. The full spectrum
of the combined operators is easily identified by rewriting them as

L*$#&=0

�
�v*

} v*+L*=(1&=0)
�

�v*
} \v*+

1
2

�
�v*+ (2.35)

This is again a Fokker�Planck operator whose spectrum is given by

*n*$=&(1&=0) :
d

i=1

ni (2.36)

This spectrum is the same as that of Eq. (2.34) except reduced by the factor
(1&=0). The eigenfunctions and eigenvalues obtained in these reduced
variables are time independent and, therefore, the values *n*$ are precisely
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the decay rates of F*(v*, t*). Since =0<1 all excitations are damped. This
analysis shows that the effect of the time dependence of the gas temperature
is to shift these decay rates by (1&=0) relative to those of the Fokker�
Planck operator alone. The transformation to a time independent form of
the equation for this identification of the modes generates an additional
differential operator, the first term on the right side of (2.32), with large
positive eigenvalues. These are controlled and dominated by corresponding
large negative eigenvalues of L* with the net result that L*$ has a
negative spectrum, with a slowing of all modes by a factor (1&=0), but still
maintaining relaxation towards the HCS. This observation is critical for
constructing kinetic models, as discussed in the next section below, indicat-
ing that L*$ rather than L* is the physically relevant operator.

The eigenfunctions of the operator given in Eq. (2.35) corresponding
to the eigenvalues in Eq. (2.36) are a Gaussian times Hermite polynomials.
Denoting them by 9 n*(v*), the general solution to (2.32) can be expressed
as

F*(v*, t*)=:
n

Cn9 n*(v*) e**n t* (2.37)

The coefficients Cn are determined by the initial condition F*(v, 0). It is
straightforward to recover the form in Eqs. (2.28) and (2.29) from this
representation.

The general solution to Eq. (2.10) for inhomogeneous states can be
expressed in a form to Eq. (2.28) with G being now a Gaussian in both
space and velocity variables. The explicit expression integral is quite com-
plex and not particularly instructive for the purposes here. However, the
analysis of the spectrum parallels closely that above for the homogeneous
case if a Fourier transform in space is performed, so that Eq. (2.10)
becomes

(�t&ik } v) F� (k, v, t)=L[Tg(t)] F� (k, v, t) (2.38)

with

F� (k, v, t)=| dr e ik } rF(r, v, t) (2.39)

The operator L+ik } v has the same spectrum as L shifted by a con-
stant, (13, 15)

*n=&a0(:) #e[Tg(t)] :
d

i=1

ni&De[Tg(t)] k2 (2.40)
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where

De(Tg)#
kBTg

m#e(Tg)
(2.41)

is the diffusion coefficient for the case of elastic collisions. In the elastic
case, the eigenvalues are time independent so the distribution function has
a diffusive mode &De(Tg) k2 for n=0, and an infinite set of modes that
decay at a rate faster by the amount a0(:) #e(Tg) � i n i . Since De(Tg) k2<<
a0(:) #e(Tg) �i ni for sufficiently small k (long wavelengths), the diffusive
mode dominates at sufficiently large times. This is the expected approach to
the homogeneous solution, first by velocity relaxation to a hydrodynamic
stage and then by spatial diffusion to a homogeneous state. However, as
discussed for the homogeneous case above, these eigenvalues are not the
relaxation rates for F� (k, v, t) when there are inelastic collisions since Tg

becomes time dependent. The same analysis in terms of dimensionless
variables shows that these relaxation rates are given by the spectrum of
L*$+ik* } v*,

*n*$=&(1&=0) :
d

i=1

ni&
De*

(1&=0)2 k*2 (2.42)

where De* and k* are the dimensionless forms of De and k,

De*=De
a0(:) #e[Tg]

v̂2
0(t)

=
1
2

(1&=0), k*=k
v̂0(t)

a0(:) #e(Tg)
(2.43)

Therefore, the distribution function has both kinetic and diffusive
modes, with the kinetic modes slowed by the factor (1&=0) as in the homo-
geneous case and the diffusion mode enhanced by the factor (1&=0)&2.
Since the eigenvalue for the diffusion mode is the smallest one, it will
dominate for sufficiently long times. Then, for example, the probability
density

n(r, t)=| dv F(r, v, t) (2.44)

for the tagged particle obeys the diffusion equation on this time scale,

{�t&
De[Tg(t)]
(1&=0)2 {2= n(r, t)=0 (2.45)
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The diffusion coefficient can be expressed in terms of the tagged particle
temperature for long times using Eq. (2.22)

De[Tg(t)]
(1&=0)2 =

kBT
m#eff [Tg(t)]

(2.46)

The right side has the form of the elastic case, except with an effective fric-
tion coefficient, #eff [Tg(t)]=(1&=0) a0(:) #e[Tg(t)], which characterizes
the rate of change of the particle's mean velocity relative to the thermal
velocity of the gas.

The discussion of the last paragraph provides a concrete example for the
justification of hydrodynamic equations for granular materials. Although
there is no asymptotic stationary state, an initial preparation eventually
relaxes via the fast kinetic modes to a dominant slow diffusive mode. The
diffusive mode relaxes on the longer time scale to a homogeneous state
which is time dependent and characterized by the cooling temperature. The
cooling of the system during the kinetic and diffusive relaxation changes
these processes from exponential to algebraic in time. Nevertheless, the
concept of ``aging to hydrodynamics'' still applies just as for fluids with
elastic collisions.

III. KINETIC MODEL FOR THE FOKKER�PLANCK EQUATION

The above exact analysis of the Fokker�Planck equation provides
both guidance and a good testing ground for the construction of kinetic
models. A kinetic model for the Fokker�Planck equation with elastic colli-
sions is constructed by replacing the operator L by one with a simpler
spectrum. In this case L is a linear operator and the method of approxima-
tion is constructive and systematic. For nonlinear kinetic equations, as
considered in the next section, the construction of kinetic models is more
flexible and governed by the physical properties of interest. These methods
and their relationship to other approximation schemes have been sum-
marized recently in ref. 16. Briefly, in the linear case the operation of L on
an arbitrary function f is expanded in a complete set of functions [9n],
assumed to be orthonormalized with respect to an inner product indicated
by ( f, g),

Lf =:
n

9n(v)(9n , Lf )

= :
n, m

9n(v)(9n , L9m)(9m , f )=\ :
n, m

PnLPm+ f
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Here Pn denotes the projection operator onto 9n . This provides a represen-
tation for the operator L

L= :
n, m

PnLPm (3.1)

Kinetic models are obtained by retaining the exact contributions from
some finite set of projection operators, and approximating the contribu-
tions to L in the orthogonal subspace by a simple degenerate operator
with a single eigenvalue (single relaxation time model). In the present case,
the exact eigenfunctions are known and can be used as the basis set for the
representation in Eq. (3.1). Then since LPm=*mPm , where *m is the eigen-
value associated with 9m and PnPm=$nmPn , Eq. (3.1) reduces to the spec-
tral decomposition of L,

L=:
n

*nPn=0P0+ :
n{0

*nPn (3.2)

The second equality makes explicit the fact that there is a null space,
corresponding to the conservation of probability. The simplest kinetic
model is obtained by collapsing the rest of the spectrum to a single
degenerate point &&,

L � && :
n{0

Pn=&P0&& :
n

Pn=&&(1&P0) (3.3)

This approximation has a very simple interpretation. The null space
associated with the conservation law is preserved but all relaxation in the
orthogonal subspace is collapsed to a single infinitely degenerate relaxation
rate &. The corresponding model kinetic equation is

(�t+v } {) F=&&(F&n�M ) (3.4)

where use has been made of the property P0 F(r, v, t)=n(r, t) �M(v�v0),
with �M denoting the Maxwellian normalized to unity.

The approximation given by Eq. (3.4) is the usual BGK model,
originally proposed by Bhatnagar, Gross, and Krook, specialized here to
tagged particle dynamics.(5) It preserves the stationary state and normaliza-
tion, while providing a simple single relaxation time description of the
dynamics. Solutions to this equation are similar to those of the Fokker�
Planck equation, showing a fast velocity relaxation on a time scale defined
by &&1 followed by a slower diffusion in space. The parameter & can be
chosen such that the equation for the average velocity is the same as that
for the Fokker�Planck equation. In this case &=#e(Tg). Application to
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calculate the self-structure function, measuring its accuracy for space and
time dependence, shows both qualitative and semi-quantitative accuracy
(10�150) over the full space-time domain.(17)

The BGK kinetic model for elastic collisions corresponds to replacing
all negative eigenvalues by the one with the smallest magnitude. For the
case of granular media the analysis of the last section shows that elimina-
tion of the time dependent temperature for the bath by scaling the
velocities generates an additional operator whose spectrum has arbitrarily
large positive eigenvalues. Ultimately these are controlled by corresponding
large eigenvalues of L. If now the spectrum of L were collapsed to form
a kinetic model without introducing a similar approximation for the effect
of the time dependent temperature, the control of the latter by the former
would no longer be possible, and unstable modes would appear in the solu-
tion to the kinetic model equation. Instead, the appropriate method is to
collapse the spectrum of the combined operator L*$ defined in Eq. (2.35).
Application of the usual kinetic modeling technique described above then
gives

L*$=0P0*+ :
n{0

*n*$Pn* � &(1&=0) &*(1&P0*) (3.5)

where &* and P0* are the dimensionless forms of & and P0 , respectively. The
choice to use L*$ for constructing the kinetic model is suggested on physi-
cal as well as mathematical grounds, since its spectrum determines the
modes or relaxation for the distribution function. For homogeneous states
the model kinetic equation representing (2.32) becomes

�
�t*

F*=&(1&=0) &*(1&P0*) F* (3.6)

In the original variables the model kinetic equation is

�t F=&&(Tg)(1&=0) _F&0&1�M \ v
v̂0(t)+&+=0a0(:) #e(Tg)

�
�v

} (vF )

(3.7)

The Maxwellian �M with the time dependent scaling v̂0(t) is again normal-
ized to unity. The generalization to inhomogeneous states is straightforward,

(�t+v } {) F=&&(Tg)(1&=0)[F&n(r, t) �M(v�v̂0(t))]

+=0a0(:) #e(Tg)
�

�v
} (vF ) (3.8)
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The HCS solution to this equation is 0&1�M(v�v̂0(t)) which differs from
Eq. (2.27) for FH only by the replacement of the temperature with T (t) �
Tg(t) a0(:)(1&=0)&1. As shown by Eq. (2.22), this difference vanishes after
a short initial transient period. The parameter & can be fixed by requiring
that (3.8) yield the exact dynamics for the average velocity u(t), Eq. (2.17).
This leads to the choice

&=a0(:) #e(Tg) (3.9)

It can be shown that this choice also implies that the correct diffusion coef-
ficient is predicted by the kinetic model. On the other hand, the exact
evolution equation for the tagged particle temperature, Eq. (2.18), is
obtained from the model only if &=2a0(:) #e(Tg). The limitation of the
model to reproduce exactly the evolution equation for more than one
moment of the distribution function is a consequence of the presence of
only a single free parameter, and occurs in the elastic case as well. In what
follows, the choice (3.9) will be taken.

This completes the definition of the kinetic model. For :=:g=1 it
reduces to the BGK kinetic equation for a tagged particle. For the inelastic
case it preserves the essential qualitative and semi-quantitative features of
the Fokker�Planck equation. To illustrate this further, consider the general
solution for homogeneous states

F(v, t)=0&1�M(v�v̂0(t))+e&(1&=0 ) t*[F0(v, t)&0&1�M(v�v̂0(t))] (3.10)

where t* is the dimensionless time scale defined in Eq. (2.31) and F0(v, t)#
ed=0 t*F(e=0 t*v, 0) is the initial distribution function with a scaled velocity
corresponding to the change from T (0) to T (0) Tg(t)�Tg(0). The solution
is positive definite for all times and monotonically decreases towards the
HCS, just as the solution to the Fokker�Planck equation. The time scales
for this relaxation are the same as well, although the details of the kinetic
modes are of course different.

To analyze the solution to the kinetic model for inhomogeneous states
it is again convenient to Fourier transform and use dimensionless variables

[�t*&ik* } v*+&*(1&=0)] F� *=&*(1&=0) n~ *(k*, t*) �*M (3.11)

with n~ *(k*, t*)=0n~ (k*, t*) and �*M(v*)=?&d�2e&v*2
. This is structurally

the same as the Fourier transform of Eq. (3.4) for the elastic case in dimen-
sionless variables, with an effective frequency &(1&=0)�a0(:) #e(Tg). In these
variables Eq. (3.11) can be solved by Laplace transform in the same way
as for elastic fluids and all the known results for the latter case transfer
directly to the case of inelastic collisions as well. This includes the existence
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of a hydrodynamic diffusive mode and a branch cut in the spectrum
representing the infinitely many kinetic modes of the Fokker�Planck equa-
tion. The hydrodynamic mode is separated from the branch cut for all k*
less than a critical value kc*=- ? . Thus, for long wavelength excitations
the initial kinetic transients decay rapidly leaving the hydrodynamic mode
as the dominant behavior. This is precisely the ``aging to hydrodynamics''
that characterizes the elastic case. However, it should be noted that this
parallel between elastic and inelastic cases is in terms of the dimensionless
variables. Qualitative differences occur when transforming back to the
original variables where exponential decay in the dimensionless time maps
to algebraic decay in real time.

The primary conclusions of the last two sections are that a Fokker�
Planck equation with time dependent coefficients results from asymptotic
analysis of the Boltzmann equation for a heavy tagged particle in a gas of
lighter particles, where all collisions are inelastic. The exact solution to the
Fokker�Planck equation shows both diffusion and kinetic modes in the
appropriate dimensionless variables. The asymptotic solution for long times
is a Maxwellian with time dependent temperature, which differs from that
of the surrounding gas but with the same cooling rate. Analysis of the spec-
trum of the Fokker�Planck equation shows that it differs from that of the
Fokker�Planck operator by a constant factor and the time dependence of
the coefficients. Transformation of the velocity to dimensionless form
eliminates this time dependence and introduces a modified Fokker�Planck
operator whose spectrum describes the correct excitations. This analysis
suggests the proper means to construct a kinetic model by contraction of
the kinetic spectrum for the modified Fokker�Planck operator. The result-
ing kinetic model in dimensionless variables has the same form as for the
elastic case. Previous studies of the latter show that the kinetic model equa-
tion is a good representation of the Fokker�Planck equation for both
hydrodynamic and kinetic modes. In this way we have established the
quantitative features of tagged particle motion in granular media and
verified the applicability of kinetic models.

IV. KINETIC MODELS FOR THE BOLTZMANN EQUATION

In this section we exploit the above analysis of tagged particle motion
to suggest how to construct kinetic models for the Boltzmann equation
representing a one component gas with inelastic collisions. The Boltzmann
equation for inelastic collisions is given by(2, 3)

(�t+v } {) f =J[ f, f ] (4.1)
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where the collision operator J[ f, f ] is obtained from the functional (2.2)
except that now both distribution functions in the integral are the
unknown dependent variable f,

J[ f, f ]=_d&1 | dv1 | d _̂ 3(g } _̂)(g } _̂)

_[:&2f (r, v$, t) f (r, v$1 , t)& f (r, v, t) f (r, v1 , t)] (4.2)

All quantities in this expression are defined as in Eq. (2.2) with the only
differences that now 2=1 and : is the coefficient of restitution for the gas
particles. Then, the restituting velocities are given by

v$=v&
1+:

2:
(g } _̂) _̂, v$1=v1+

1+:
2:

(g } _̂) _̂ (4.3)

The most important properties of J[ f, f ] for the purposes here are those
that determine the form of the macroscopic balance equations for mass,
momentum, and energy,

1 0

| dv \ mv + J[ f, f ]=\ 0 + (4.4)
1
2mV 2 &(d�2) nkBT`

where V(r, t)=v&u(r, t) and u is the nonequilibrium flow velocity. Also
`(t) is the cooling rate already introduced in Eq. (2.6) and determined from
the explicit form of J[ f, f ] to be

`=(1&:2)
m?(d&1)�2_d&1

4d1 ((d+3)�2) nkBT | dv | dv1 |v&v1|3 f (r, v, t) f (r, v1 , t)

(4.5)

As mentioned in Section II, a HCS of the form fH(v, t)=nv&d
0 (t) ,(v�v0(t))

with v0(t)=[2kBT (t)�m]1�2 exists and it is determined by the solution to

(�t T ) �T fH=J[ fH , fH ] (4.6)

or equivalently, using Eq. (2.6),

`H

2
�

�v
} (v fH )=J[ fH , fH ] (4.7)

Equations (4.4) and (4.7) are the primary exact properties of the Boltzmann
collision operator to be preserved in any acceptable kinetic model.
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To construct the kinetic model recall from the previous section that
the proper spectrum for the Fokker�Planck equation was obtained by scal-
ing the velocities with a time dependent thermal velocity to account for
cooling. The generator for the dynamics in this representation was not the
scaled Fokker�Planck operator L* but rather L*$=L*&=0(���v*) } v*,
where the second term represents the effects of cooling (see Eq. (3.5) and
the discussion above it). Guided by these results for tagged particle motion,
the Boltzmann equation is rewritten in the form

(�t+v } {) f &
`
2

�
�v

} (Vf )=J$[ f, f ] (4.8)

J$[ f, f ]#J[ f, f ]&
`
2

�
�v

} (Vf ) (4.9)

The velocity derivative term on the left side compensates for the time
dependence in the HCS. The corresponding modification of J[ f, f ] to
J$[ f, f ] on the right side leads to the properties

1 0

J$[ fH , fH ]=0, | dv \ mv + J$[ f, f ]=\0+ (4.10)
1
2mV 2 0

as follows from direct evaluation using Eq. (4.4). Thus J$[ f, f ] has the
same structure as J[ f, f ] for the elastic case: an invariant state and d+2
vanishing low velocity moments. This suggests that the usual BGK kinetic
model for elastic collisions is appropriate to represent J$[ f, f ] rather than
J[ f, f ] in the case of inelastic collisions. This is equivalent to collapsing
the spectrum of J$ instead of J. Therefore, we approximate

J$[ f, f ] � &&( f & flH ) (4.11)

As in the case of the Fokker�Planck equation discussed in the previous
section, & has a space and time dependence that occurs only through the
density and temperature, and is a free parameter of the model. Also, flH is
a local form of the homogeneous solution obtained from fH by replacing
v � V=v&u, and by replacing the temperature and density with their
local values for the nonequilibrium state considered. This implies that flh

has the same d+2 lowest velocity moments as f and assures that the
kinetic model defined by Eq. (4.11) has the required properties (4.10). With
this choice the model kinetic equation becomes

(�t+v } {) f =&&( f & flH )+
1
2

`
�

�v
} (Vf ) (4.12)
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This is the model we propose as a representation of the Boltzmann equa-
tion for inelastic collisions. By construction it yields the correct macro-
scopic balance equations for mass, energy, and momentum, and has the
same HCS. The free parameter &[n(rt), T (r, t)] can be chosen to optimize
agreement with the viscosity or thermal conductivity for the Boltzmann
equation. In these respects it has the same expected qualitative and quan-
titative features as the BGK equation for elastic collisions. A comparison
of (4.12) with two closely related earlier kinetic models(3, 6�8) has been
presented elsewhere.(8)

A. Solution to the Linearized Kinetic Equation

To illustrate the utility of the kinetic model, its linearization around
the HCS is considered, and the solution for the initial value problem is
given. But two more simplifications of the model will be introduced in this
application. The function flH must be determined from the solution fH of
the Boltzmann equation, Eq. (4.7). This problem is quite complex and an
analytic form is not yet known. However, Monte Carlo simulations of the
solution to this equation show the result remains quite close to a
Maxwellian even for relatively large dissipation.(18) Also, `[ f ] is the
bilinear functional of f given in Eq. (4.5) and provides an additional com-
plexity of the model kinetic equation not present for elastic collisions.
Recent calculations of `[ f ] for weakly inhomogeneous states(8) have
shown that it is very well approximated by ` � `l#`[ fl], where fl is the
local equilibrium state obtained from a Maxwellian. For practical pur-
poses, therefore, two additional approximations in the kinetic model are
considered in this section

flH � fl=n \ m
2?kBT +

d�2

exp \&
mV 2

2kBT + (4.13)

`[ f ] � `l=(1&:2)
2?(d&1)�2_d&1

d1 (d�2)
n \kBT

m +
1�2

(4.14)

leading to the final form

(�t+v } {) f =&&( f & fl)+
1
2

`l

�
�v

} (Vf ) (4.15)

As a consequence of the approximations introduced by Eqs. (4.13) and
(4.14), the energy balance equation and the homogeneous cooling solution
are only approximately the same as for the Boltzmann equation. These are
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tolerable quantitative compromises that do not affect any qualitative rela-
tionship of the two kinetic equations. We emphasize that these additional
approximations are not necessary for applications of the kinetic model.

The linearized form is obtained by defining the deviation of the dis-
tribution function from its homogeneous cooling form fH by

$f = f & fH (4.16)

and the corresponding deviations of the hydrodynamic fields

$n=n&nH , $T=T&TH , $u=u (4.17)

Consider an initial state for which the deviation $f is small and assume an
interval of later times for which it remains small (a finite interval for
unstable states). Then substitution of Eq. (4.16) into (4.15) and retaining
only linear terms in $f gives

\ �
�t

+v } {+&H+ $f &
`H

2
�

�v
} (v$f )

=
$n
nH \&H+

`H

2
�

�v
} v+ fH&\&H+

`H

2 + $u }
�

�v
fH&

$T
2TH \&H&

`H

2 +
�

�v
} (vfH )

(4.18)

The detailed analysis of this linearized kinetic model is relegated to
Appendix B. The possible excitations of the gas include the modes
associated with the free particle motion modulated by pure exponential
damping, the d+2 hydrodynamic modes, and the non-hydrodynamic, or
kinetic, modes. The simplest illustration of these excitations occurs for the
special case of initial transverse velocity perturbations. As described in
Appendix B, the kinetic model provides a precise mapping of the macro-
scopic transverse velocity field for granular fluids to that for normal fluids.
In particular, it shows that the known relaxation of kinetic modes to a long
time, long wavelength hydrodynamic description is the same up to con-
siderations of scaling. The results show that the transverse velocity field
perturbations have two types of dynamical response. One is hydrodynamic
with relaxation on a hydrodynamic time scale which diverges as the
wavenumber goes to zero. The second is a fast kinetic relaxation on the
time scale of the collision time. Thus for long times and long wavelength
perturbations the hydrodynamic relaxation dominates and a simpler hydro-
dynamic description is justified.

The analysis is similar for the response to more general initial pertur-
bations. Although there is not an exact scaling relation between the elastic
and inelastic cases, as in Eq. (B.29), it still follows that there is a separation
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into short time kinetic and long wavelength hydrodynamic excitations. The
hydrodynamic excitations include the above d&1 shear modes, plus three
additional modes. For elastic collisions the latter are the two sound modes
and the heat diffusion mode. In the case of inelastic collisions these three
modes are more complex and do not necessarily have this same physical
interpretation. The hydrodynamic description will be presented in detail
elsewhere.

B. Uniform Shear Flow

To illustrate an application of the nonlinear kinetic model consider the
case of uniform shear flow, characterized by a uniform temperature and
density, and a flow field ux=ay. The stationary distribution function has
the form f (r, v; t)= fs(V) and is the solution to

&aij Vj
�

�Vi
fs&

�
�V

} \1
2

`lVfs+=&&( fs& fl ) (4.19)

with aij=a$ix $ jy . Note we are using again the simplified version of the
model with the two additional approximations given by Eqs. (4.13) and
(4.14). Solutions of Eq. (4.19) exist only for special values of `l , determined
by the condition that the temperature should be constant, i.e.,

dnskBTs

2
`l(ns , Ts)='(a, Ts) a2, '(a) a=&| d V mVxVy fs(V) (4.20)

The second equation identifies '(a) as the shear rate dependent shear
viscosity. The first equation defines a special temperature, Ts(a), at which
the stationary state occurs. This represents the balance between viscous
heating due to the imposed shear and cooling due to the inelastic collisions.
For the case of elastic collisions, the latter effect can be imposed by the
addition of a thermostat obtained using an external non-conservative force
of the form Fext=&*(a) mV. The corresponding stationary kinetic equa-
tion has the same form as (4.19) with the correspondence `l W 2*(a). With
this identification, all the known results for uniform shear flow with elastic
collisions and a thermostat(19) can be transferred to the case of inelastic
collisions. For example, the exact stationary solution to (4.19) is

fs(V)=|
�

0
dt e&t(1&(d�2) `*) fl(e(1�2) `*t4ij (&t) Vj ), 4 ij (t)=$ ij&(aij�&s) t

(4.21)
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where `* #`l(ns , Ts)�&(ns , Ts) is independent of the temperature and shear
rate, but otherwise depends on the coefficient of restitution; in the three-
dimensional case, `*=5(1&:2)�(4+6:+2:2). The solution depends on
the shear rate through the explicit dependence in 4ij (t), and through the
dependence of fl and &s on Ts(a). The latter is determined by taking the
second moments of (4.19) to get

&2
s `*(1+`*)2=

2
d

a2 (4.22)

Let T0 denote some constant reference temperature, e.g., the initial tem-
perature when the shear is applied. Also, define &0#&(ns , T0), T*(a)#
Ts(a)�T0 , and a*#a�&0 . Then (4.22) gives

T*(a)=
2

d`*
a*2

(1+`*)2 (4.23)

This completely determines the shear rate dependence of the exact solution
(4.21). Any property of interest can be calculated from this solution by
quadratures. For example, the shear viscosity is readily found from (4.21)
to be

'(a, Ts)=
ps

&s(1+`*)2 (4.24)

The shear rate dependence of the viscosity occurs entirely through the tem-
perature. Since ps �&s B - Ts(a) this result implies '(a, Ts) B a. Other
properties such as the viscometric functions can be calculated simply in a
similar way. For instance, Pxx&Pyy= psd`*�(1+`*).

This example of shear flow shows the value of the kinetic model for
insight about nonlinear transport in states far from equilibrium that would
be difficult to explore directly from the Boltzmann equation. Comparisons
in the elastic case between Monte Carlo simulation of the Boltzmann equa-
tion and the kinetic model show good agreement except at very large shear
rates.(20) Recent simulations for the inelastic case show a similar good
agreement.(18, 21, 22)

V. KINETIC MODELS AT FINITE DENSITY

The previous discussion has been restricted to the case of a low density
gas for which the Boltzmann description is presumed appropriate. At
higher densities the revised Enskog kinetic theory (RET) is known to
provide an accurate description for elastic collisions.(9) Its generalization to
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inelastic collisions is straightforward and provides the basis for analysis of
granular flow at finite densities. The RET kinetic equation is given by(3)

\ �
�t

+v } {+ f (r, v; t)=JE[r, v | f (t)] (5.1)

JE[r, v | f (t)]=_d&1 | dv1 | d _̂ 3(g } _̂)(g } _̂)

_[:&2/[r, r&_ | n(t)] f (r, v$, t) f (r&_, v$1 , t)

&/[r, r+_ | n(t)] f (r, v, t) f (r+_, v1 , t)] (5.2)

The notation is the same as in (4.2) and (4.3). The differences in the spatial
arguments on the right side represent the fact that a colliding pair of par-
ticles have their centers separated by \_=\__̂. Also, /[r1 , r2 | n(t)] is
the pair correlation function for an equilibrium system with non-uniform
density field n(r, t). It gives the probability to find particles at r1 and r2 for
a system at equilibrium in an external potential Uext(r) chosen to produce
the density field of the actual nonequilibrium state

n(r, t)=| dv f (r, v, t) (5.3)

Thus, /[n] is an equilibrium functional that can be determined exactly from
the second functional derivative of the equilibrium free energy functional
for an inhomogeneous state, but it is evaluated at the nonequilibrium den-
sity. This implies that /[n] and, consequently, JE[ f ] are highly non-linear
functionals of f through this density dependence and Eq. (5.3).

The construction of a kinetic model with the same qualitative features
as the RET has been discussed recently(10, 11) and we review briefly the
proposed form in the case of elastic collisions. A primary new feature of the
RET collision operator is collisional transfer contributions to the heat and
momentum fluxes. As a consequence, there are additional contributions to
the right side of (4.4) for the moments of JE[ f ] representing these colli-
sional transfer terms. To account for this important effect, the projection of
JE[ f ] onto these moments is extracted explicitly,

JE[ f ]=PJE[ f ]+(1&P) JE[ f ] (5.4)

where P is the projection operator onto an orthonormal set constructed
from [1, v2, v]:
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Pg(v)=n&1 :
:

�:(v) flH(v) | dv$ �:(v$) g(v$) (5.5)

[�:]={1, c&1�2 \m;
2

V 2&
d
2+ , (m;)1�2 V= (5.6)

with the normalization coefficient

c=n&1 | dv flH(v) \m;
2

V 2&
d
2+

2

(5.7)

where ;#1�kBT. The first term on the right hand side of Eq. (5.4) gives the
collisional transfer contributions to the fluxes in the conservation equa-
tions, and must be retained in any acceptable kinetic model. The second
term on the right side does not contribute to the form of the conservation
laws and the simplest approximation is to represent JE[ f ] in this ``less
important'' subspace as the negative of an effective collision frequency, *,
times the distribution function

JE[ f ] � PJE[ f ]&(1&P) *f (5.8)

This choice retains the important qualitative features the RET regardless of
the choice for *: exact conservation laws with the correct fluxes, and the
exact stationary states (both fluid and crystal). Further details of the reduc-
tion of this model and the choice for * are given in ref. 11.

From the analysis of Sections III and IV, it is clear that the extension
of this kinetic model to inelastic collisions should be implemented in terms
of J$E[ f ]=JE[ f ]& 1

2` ���v } (Vf ):

J$E[ f ] � PJ$E[ f ]&(1&P) *f (5.9)

The resulting model kinetic equation is then found to be (see Appendix C)

\ �
�t

+v } {+ f =&&( f & flH )+
1
2

`
�

�v
} (Vf )+I[r, v | f ] (5.10)

This has the same form as (4.12) except for the additional functional on the
right side,

I[r, v | f ]= &
;
n

flH _V{ : Pc[r, v | f ]

+
d
2c \

m;
d

V 2&1+ ({ } qc[r, v | f ]+Pc[r, v | f ] : {u)&
+ flH[A[r, v | f ] : D(V)+B[r, v | f ] } S(V)] (5.11)
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with

D(V)=m \VV&
1
d

V 2 1+ , S(V)=\m
2

V 2&
2

d; \c+
d 2

4 ++ V (5.12)

1 being the unit tensor. The functionals Pc[r, v | f ], qc[r, v | f ], A[r, v | f ],
and B[r, v | f ] are determined from moments of JE[ f ] and are given
more explicitly in Appendix C. They vanish at low density limit so that the
kinetic model (4.12) for the Boltzmann equation is regained in this limit.

VI. DISCUSSION

The objective here has been to present a kinetic model for the
Boltzmann equation (and its high density counterpart, the RET equation)
for a system of hard spheres with inelastic collisions. For elastic collisions,
the corresponding kinetic models have provided analysis of dynamical
phenomena far beyond that for which the Boltzmann equation is tractable
and a similar role is expected for the inelastic case as well. There are three
main components to our presentation: an exact analysis of tagged particle
motion for a heavy particle in a dilute gas, construction of kinetic models
based on a spectral analysis of effects due to cooling, and illustration of
their application in two non-trivial examples beyond the practical reach
of the Boltzmann equation. We summarize and comment on the primary
results:

v The Boltzmann�Lorentz equation was used to describe tagged particle
motion in a dilute gas of inelastic hard spheres. The restitution coefficients
for tagged particle-gas particle collisions and that for the gas particles were
taken to be independent. This kinetic equation was reduced to the corre-
sponding Fokker�Planck equation using a Kramers�Moyal expansion in
the limit of small mg T (t)�mTg(t). In addition to small mass ratio, a new
condition on the Fokker�Planck limit occurs due to the cooling of the gas.
It is required that T (t)�Tg(t) not grow without bound for long times or,
equivalently, that the cooling rate of the gas `[Tg(t)] not exceed the
relaxation rate of the tagged particle 2a0(:) #e[Tg(t)]. This implies that
the deviation of the restitution coefficient for the gas particle collisions
from the elastic limit is only of order mg �m. However, the relevant time
scales for the tagged particle motion are of order - m�mg and the gas cool-
ing effects are significant on this time scale. These conditions can be
satisfied without any restrictions on the restitution coefficient for the tagged
particle-gas collisions. The Fokker�Planck equation can be solved exactly
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for arbitrary initial conditions and describes velocity relaxation to a hydro-
dynamic (diffusive) stage and asymptotic approach to a Maxwellian distri-
bution with time dependent temperature. The cooling rate of the particle in
this asymptotic state is the same as that of the surrounding gas, but in
general the temperatures of the gas and tagged particle are different. The
approach to this asymptotic state is characterized by an infinite set of dis-
crete modes, just as in the elastic case, but these modes are shifted a finite
amount due to the effects of the gas cooling. Furthermore, these modes are
not determined from eigenvalues of the Fokker�Planck operator but rather
a related operator obtained by transformation to dimensionless variables to
remove the time dependent temperature. On the basis of this last observa-
tion regarding the relevant spectrum, a model kinetic equation was con-
structed whose solution is in good agreement with that for the Fokker�
Planck equation. The primary conclusions from this analysis are that the
qualitative features of fast relaxation to a dominant hydrodynamic stage
can be justified for systems with inelastic collisions and that these features
can be captured quantitatively in a simple kinetic model.

v The Boltzmann equation for a low density gas of inelastic hard
spheres was rewritten to identify the relevant collision operator J$[ f, f ]#
J[ f, f ]& 1

2 ` ���v } (Vf ) accounting for the effects of cooling. The corre-
sponding model kinetic equation was obtained by replacing J$[ f, f ] with
a single relaxation time form. The resulting kinetic model yields the same
macroscopic balance equations for mass, energy, and momentum as those
obtained from the Boltzmann equation. In addition, it supports the same
HCS solution. In this respect, the model kinetic equation retains all the
physical mechanisms relevant for inelastic collisions and a possible fluid
dynamics description. Two examples were provided to demonstrate its
utility under conditions for which the Boltzmann equation is not tractable.
The first is an exact solution to the linearized equation for states close to
the HCS. The solution allows complete characterization of the spectrum,
including both fast kinetic modes and slower hydrodynamic modes. The
case of an initial shear excitation was considered in detail, where an exact
mapping of the spectrum for inelastic collisions to that for elastic collisions
was obtained. In this way the approach to a hydrodynamic stage was again
demonstrated, without restriction to weak inelasticity or to the Navier�
Stokes long wavelength limit. The second example was a gas undergoing
uniform shear flow. It was observed that the stationary solution to the non-
linear kinetic equation is equivalent to that for a gas with elastic collisions
and a thermostat. The parameters of the thermostat can be related simply
to the cooling rate so that the solution known for the elastic case can be
adopted for the inelastic case as well. The exact solution and shear rate
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dependent viscosity were identified in this way for arbitrary values of the
shear rate, including states very far from equilibrium.

v The method for constructing kinetic models from the Boltzmann
equation was extended to the dense fluid revised Enskog kinetic equation.
Recent applications of such a dense fluid model for shear flow in the elastic
case show excellent agreement with molecular dynamics and Monte Carlo
simulation results.(8) Preliminary calculations for the inelastic case show a
similar accuracy.(23)

v The analysis of the Boltzmann�Lorentz equation considered the spe-
cial case for which the background gas is in its homogeneous cooling state.
It is known that this state is unstable to long wavelength perturbations(24)

so the results obtained apply only over time scales short compared to that
for growth of perturbations. However, as described in Section II, the condi-
tions of the derivation require :g � 1 as well as 2 � 0. Consequently, the
background gas is asymptotically stable and the analysis is not compro-
mised in any way by this complication. Regarding the remainder of the
paper, the kinetic models are parameterized by the local cooling distribu-
tion which is not homogeneous. In fact, it describes the exact spatial varia-
tions of the hydrodynamic fields. Consequently, at the level of the kinetic
equation the instability is expected to be well-described and is confirmed by
Monte Carlo simulations. The Chapman�Enskog expansion of the kinetic
theory above the homogeneous cooling state to obtain hydrodynamics is
restricted by the instability. There are two different cases. In the first one,
the time scale for the instability is long compared to that for the establish-
ment of hydrodynamics, and the hydrodynamic equations in fact provide a
means for the analysis of the onset and growth of the instability.(25)

A second case is extreme dissipation such that the homogeneous cooling
state becomes unstable prior to the dominance of a hydrodynamic descrip-
tion based on that state. This does not rule out a closed description based
on the hydrodynamic fields obtained from expansion about a different
reference state. This possibility has not been explored to date, but the
kinetic models presented here provide an appropriate basis for considering
such complex states. The formation of high density clusters would invalidate
the kinetic model based on the Boltzmann equation, but that based on the
RET in Section V. is particularly promising for such states since they are
well-described through the pair functional /[r1 , r2 | n(t)] (note that the
RET for elastic collisions supports fluid, solid, and coexisting states).

In summary, practical kinetic models for exploring the qualitative and
quantitative features of inelastic hard spheres have been proposed,
analyzed, and illustrated. They are expected to provide a new basis for
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exploring states far from equilibrium and boundary driven systems in a
complementary and more detailed fashion than via fluid dynamics, and
under conditions for which the latter may not be applicable.

APPENDIX A. DERIVATION OF THE FOKKER�PLANCK
EQUATION

In this appendix a formal expansion of Eq. (2.1) in 2=mg �m is
described. To set up the expansion, it is convenient to represent the colli-
sion operator J in terms of its adjoint. Let H(v) be an arbitrary function
of v and consider the integral

I[H]=| dv H(v) J[v | F, f ]

=_d&1
0 | dv | dv1 H(v)

_| d _̂ 3(g } _̂)(g } _̂)[:&2F(v$) f (v$1)&F(v) f (v1)] (A.1)

The space and time dependence of the functions have been omitted for
simplicity. We change variables in the first term on the right hand side to
get

I[H]=_d&1
0 | dv | dv1 F(v) f (v1) | d _̂ 3(g } _̂)(g } _̂)[H(v&$v)&H(v)]

(A.2)

where

$v=
(1+:) 2

1+2
(g } _̂) _̂ (A.3)

Assuming 2 is small, a Kramers�Moyal expansion in the velocity jumps $v
is performed to second order,

I[H]&| dv H(v) { �
�v

} [A(v) F(v)]+
1
2

�
�v

�
�v

: [N(v) F(v)]= (A.4)
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with

A(v)=
(1+:) 2

1+2
?(d&1)�2_d&1

0

1 ((d+3)�2) | dv1 f (v1) gg (A.5)

N(v)=_(1+:) 2
1+2 &

2 ? (d&1)�2_d&1
0

1 ((d+5)�2)

_| dv1 f (v1) _d+3
2d

g31+
3
2

g \gg&
1
d

g2 1+& (A.6)

Here 1 is the second order unit tensor. Since H(v) is an arbitrary function,
comparison of Eqs. (A.1) and (A.4) gives

J[v | F, f ]&
�

�v
} [A(v) F(v)]+

1
2

�
�v

�
�v

: [N(v) F(v)] (A.7)

where terms neglected are at least of order 23. To identify the remaining 2
dependence of A and N, we particularize for the case of a gas in its HCS
and introduce the thermal velocities

v~ =
v

v0(t)
, v~ 1=

v1

vg(t)
(A.8)

where vg(t) was defined following Eq. (2.4) and v0(t)=[2kBT (t)�m]1�2,
with T (t) being the temperature parameter for the tagged particle, defined
in Eq. (2.15). We also introduce

g~ =
g

v0(t)
=v~ &_Tg(t)

T (t) &
1�2

2&1�2 v~ 1 (A.9)

The idea is that the relevant velocities in determining the properties of the
tagged particle and their time evolution are of the order of the thermal
velocities for both the tagged particle and the gas ones. Notice that there
is no reason a priori to assume that Tg(t) and T (t) are of the same order.
In fact, we will see below that this is not always the case. A formal expan-
sion in (T�Tg) 2 leads to

A(v, t)&#(t) v, N(v, t)&2#� (t) 1 (A.10)
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where

#(t)=(1+:)
2?(d&1)�2_d&1

0

1 ((d+1)�2) d
ng \2kBTg

m +
1�2

21�2 | dv ,(v) v (A.11)

#� (t)=(1+:)2 ?(d&1)�2_d&1
0

21 ((d+3)�2) d
ng \2kBTg

m +
3�2

21�2 | dv ,(v) v3 (A.12)

In the elastic limit, :=:g=1, the HCS becomes the usual equilibrium state
with constant temperature and ,(v)=?&d�2e&v2

. Then, Eqs. (A.11) and
(A.12) reduce to

#e(Tg)=
4?(d&1)�2_d&1

0 ng21�2

d1 (d�2) \2kBTg

m +
1�2

, #� e(Tg)=
kBTg

m
#e(Tg) (A.13)

This last equality is the expected fluctuation-dissipation relation. Returning
to the HCS for a granular gas and an inelastic tagged particle, we can
rewrite Eqs. (A.11) and (A.12) in the form

#(t)=#e[Tg(t)] a(:) (A.14)

#� (t)=#e[Tg(t)] a(:) b(:)
kBTg(t)

m
(A.15)

where we have introduced the functions

a(:)=
(1+:) 1 (d�2)
21 ((d+1)�2) | dv ,(v) v (A.16)

b(:)=
1+:
d+1

� dv ,(v) v3

� dv ,(v) v
(A.17)

The reduced distribution function for the gas particles in the HCS has a
weak dependence on the coefficient of restitution :g . This dependence is
associated with the deviation of ,(v) from the Maxwellian form ?&d�2e&v2

.
In the elastic limit for the whole system, :=:g=1, both functions a(:) and
b(:) reduce to unity.

Use of Eqs. (A.7) and (A.10) into Eq. (2.1) leads to an equation of the
Fokker�Planck form,

(�t+v } {) F(r, v, t)=#e[Tg(t)] a(:)
�

�v
} _v+

kBTg(t)
m

b(:)
�

�v& F(r, v, t)

(A.18)
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To clarify the context of the Fokker�Planck limit in which the above equa-
tion has been derived, it is convenient to consider the time evolution of the
temperature parameter T (t) of the tagged particle. Equation (A.18) leads
to

[�t+2#e(Tg) a(:)] T (t)=2#e(Tg) a(:) b(:) Tg(t) (A.19)

that using Eq. (2.6) can be rewritten as

[�t+2#e(Tg) a(:)&`(Tg)]
T (t)
Tg(t)

=2#e(Tg) a(:) b(:) (A.20)

The general solution of this equation is

T (t)
Tg(t)

=e&2(1&=) t* T (0)
Tg(0)

+b(:)(1&=)&1 [1&e&2(1&=) t*] (A.21)

where t* is the dimensionless time scale defined by

t*(t)=a(:) |
t

0
dt$ #e[Tg(t$)] (A.22)

and

==
`[Tg(t)]

2a(:) #e[Tg(t)]
(A.23)

Since both ` and #e are proportional to T 1�2
g , = is a time independent con-

stant. From Eq. (A.21) it follows that the asymptotic behavior of the ratio
T (t)�Tg(t) for t � � (t* � �) depends quite strongly on the value of =.
For =<1, the ratio becomes a constant given by

lim
t � �

T (t)
Tg(t)

=b(:)(1&=)&1 (A.24)

while for =�1 it grows without bound. This behavior is easily understood
since = is a measure of the cooling rate of the gas as compared to the tem-
perature relaxation rate for the tagged particle.

Taking into account that the derivation of the Fokker�Planck equa-
tion requires the combination (T�Tg) 2 to be small, it is clear that it is
restricted to systems with =<1. Closer inspection of the detailed expres-
sions for `(Tg), #e(Tg), and a(:) shows that this condition implies the limits
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2 � 0 and :g � 1, scaled in the form given by Eq. (2.14). In this way,
Eqs. (2.10) and (2.11) follow from Eq. (A.20) by using

lim
:g � 1

b(:)= lim
:g � 1

a(:)=
1+:

2
(A.25)

APPENDIX B. DETAILS OF THE SOLUTION TO THE
LINEARIZED KINETIC EQUATION

In this appendix we analize in detail the linearized kinetic equation
(4.18). First, it is useful to introduce the dimensionless variables

v*=
v

vH(t)
, r*=

&H(t)
vH(t)

r, dt*=&H(t) dt (B.1)

and the dimensionless quantities

`*=
`H

&H
, $f *=

vd
H(t)
nH

$f (B.2)

with vH(t)=v0[TH(t)]. The linearized kinetic model equation then
becomes

\ �
�t*

+v* }
�

�r*
+1+ $f *(r*, v*, t*)= f *H(v*) :

i

C i (r*, t* | $f *) �i (v*)

(B.3)

where the functions Ci (r*, t* | $f *) are the normalized deviations of the
hydrodynamic fields from their values in the homogeneous state,

[Ci ]#[C1 , C, Cd+2]={$n
nH

, 21�2 $u
vH(t)

, \d
2+

1�2 $T
TH= (B.4)

They are dimensionless linear functionals of $f * given by

Ci (r*, t* | $f *)=| dv* / i (v*) $f *(r*, v*, t*) (B.5)

with

[/i (v*)]={1, 21�2v*, \d
2+

1�2

\2
d

v*2&1+= (B.6)
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The functions /i are an orthonormal set with respect to integration over
the normalized Gaussian f *H(v*),

| dv* f *H(v*) /i (v*) /j (v*)=$ij (B.7)

Finally, the associated functions �i (v*) in (B.3) are

[�i (v*)]={1&`* \d
2+

1�2

/d+2(v*), \1+
`*
2 + /(v*), \1&

`*
2 + /d+2(v*)=

(B.8)

Since Eq. (B.3) is linear, the general solution can be represented as
superposition of those for a given wavelength (or wavevector). Conse-
quently, it is convenient to convert the kinetic equation to an algebraic
equation by Fourier�Laplace transformation. The transformed perturba-
tion is defined by

$f� *(k*, v*, z*)=|
�

0
dt* e&z*t* | dr* eik* } r* $f *(r*, v*, t*) (B.9)

The transformed linear kinetic equation reads

$f� *(k*, v*, z*)=(z*+1&ik* } v*)&1 _$f *(k*, v*, t*=0)

+ f *H(v*) :
i

C� i (k*, z* | $f *) �i (v*)& (B.10)

This formal solution is completed by using it in Eq. (B.5) to obtain closed
expressions for the C� i ,

C� i (k*, z* | $f *)=:
j

[I&M(k*, z*)]&1
ij C� 0j (k*, z* | $f *) (B.11)

where I is the unit matrix of dimension d+2,

C� 0i (k*, z* | $f *)=| dv* /i (v*)(z*+1&ik* } v*)&1 $f *(k*, v*, t*=0)

(B.12)

Mij (k*, z*)=| dv* f *H(v*) /i (v*) �j (v*)(z*+1&ik* } v*)&1 (B.13)
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The possible excitations of the gas are determined from the singularities
of the general solution given by Eq. (B.10) in the complex z-plane. These
include the single particle excitations damped at the collision frequency,
given by z*=&1+ik* } v*. They represent free particle motion modulated
by pure exponential damping. The additional excitations arise from the
solutions to det[I&M(k*, z*)]=0. As described below, these solutions are
the d+2 hydrodynamic modes. Finally, M(k*, z*) has a branch point at
z*=&1 that leads to the non-hydrodynamic, or kinetic, modes.

The simplest illustration of these excitations occurs for the special case
of initial transverse velocity perturbations. The components of the flow
field u can be chosen to be the longitudinal component, k� } u, where k� is a
unit vector along k, and d&1 transverse components [êi } u], where the êi ,
i=1,..., d&1, are unit vectors orthogonal to k. Consider an initial pertur-
bation of the form

$f *(k*, v*, t*=0)= f *H(v*) ê1 } v* (B.14)

corresponding to a perturbation of the transverse velocity flow field,
$u(k, 0)=[vH(0)�2] ê1 . Then, all C� i vanish except the one associated with
the component of the velocity v1*=ê1 } v*, and from Eqs. (B.10)�(B.12) it
is obtained

$f� *(k*, v*, z*)=(z*+1&ik* } v*)&1 f *H(v*) ê1 } v*

__1+- 2 \1+
`*
2 + ê1 } C� (k*, z*)& (B.15)

with

ê1 } C� (k*, z*)=
i

- 2 k*
8 \z*+1

ik* +_1&
i

k* \1+
`*
2 + 8 \z*+1

ik* +&
&1

(B.16)

where 8(x) is the complex probability integral

8(x)=
1

- ? |
�

&�
dv e&v2

(v&x)&1 (B.17)

In addition to the damped single particle excitations mentioned above,
the dynamical response to transverse perturbations arises from the spec-
trum of ê1 } C� (k*, z* | $f *) as well, i.e., the branch cut of 8[(z*+1)�ik*]
and the solutions to

i
k* \1+

`*
2 + 8 \z*+1

ik* +=1 (B.18)
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This can be rewritten in the same form as the corresponding dispersion
relation for transverse excitations in an elastic fluid by a change of
variables

k*=k� \1+
`*
2 + (B.19)

z*+1=(z� +1) \1+
`*
2 + (B.20)

to get

i
k�

8 \z� +1

ik� +=1 (B.21)

There is only one solution to this equation, z� =&zs(k� ), representing the
(d&1)-fold degenerate hydrodynamic shear mode (zs(k� ) vanishes as
k� � 0). The function zs(k� ) is precisely the same as that from the kinetic
model for elastic collisions except with k* � k� . It is a real, positive,
monotonically increasing function defined for all k� <- ? . In terms of z*
and k* this hydrodynamic mode is

z*=
`*
2

&\1+
`*
2 + zs \ k*

1+ 1
2 `*+ (B.22)

This expression is defined for k*<(1+ 1
2`*) - ? . For small k* the Navier�

Stokes approximation is recovered:

z*&
`*
2

&
k*2

2+`*
(B.23)

Note that z* does not vanish as k* � 0 since the velocity perturbation is
reduced by T 1�2

H and the cooling generates an exponential growth at half
the cooling rate in these dimensionless variables. The dimensionless shear
viscosity '* can be identified from the coefficient of k*2 by writing the
Navier�Stokes equations in the same variables,

'*#
'&H

pH
=\1+

`*
2 +

&1

(B.24)

where pH is the pressure. This result can be used to imbed the shear
viscosity for the Boltzmann equation for inelastic collisions in the kinetic
model by a suitable choice of &H . Let '0 denote the Boltzmann shear
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viscosity in the elastic limit and define a characteristic frequency by
&0#pH �'0 . Then Eq. (B.24) can be written

'
'0

=
&0

&H + 1
2`H

(B.25)

This viscosity relative to its elastic limit has been calculated recently from
the Boltzmann equation for d=3.(8) The form (B.25) can be made to agree
with the Boltzmann result with the choice

&H=&0[1& 1
4 (1&:)2]&`H (B.26)

Finally, it is instructive to invert the Laplace transform in this example
of transverse perturbations to show the approach of the general solution
for ê1 } $u(k, t) to that from hydrodynamics for long times. Using that
C=- 2 $u�vH(t), the inverse Laplace transform of Eq. (B.16) yields

ê1 } $u(k, t)
ê1 } $u(k, 0)

=\TH (t)
TH (0)+

1�2 1
2?i |c

dz* ez*t*

i
k*

8 \z*+1
ik* +

1&
i

k* \1+
`*
2 + 8 \z*+1

ik* +
(B.27)

The integrand in the above expression is analytic for Re z*>`*�2 so the
Bromwich integral can be taken to extend from &i�+ 1

2`* to i�+ 1
2`*.

Next, using the change of variables in Eqs. (B.19) and (B.20) this simplifies
to

ê1 } $u(k, t)
ê1 } $u(k, 0)

=
1

2?i |
i�

&i�
dz� ez� t�

i
k�

8 \z� +1

ik� +
1&

i
k�

8 \z� +1

ik� +
(B.28)

with t� #t*(1+ 1
2`*). This is the same result as obtained from the BGK

kinetic model for elastic fluids, ê1 } $u0(k, t), except that k and t are
replaced by k� and t� ,

ê1 } $u(k, t)=ê1 } $u0 \ k*
1+`*�2

, t* \1+
`*
2 ++ (B.29)

The kinetic model therefore provides a precise mapping of the macroscopic
transverse velocity field for granular fluids to that for normal fluids. In
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particular, it shows that the known relaxation of kinetic modes to a long
time, long wavelength hydrodynamic description is the same up to con-
siderations of scaling. To be more explicit, the integral in (B.28) can be
evaluated as part of a closed contour enclosing the branch cut of 8 and the
hydrodynamic pole of (B.21):

ê1 } $u(k, t)
ê1 } $u(k, 0)

=A(k� ) e&zs (k� ) t� +e&t� B(k, t� ) (B.30)

where

A(k� )=&_d ln 8((z� +1)�ik� )
dz� &

&1

z� =&zs

(B.31)

B(k, t� )=Re
1

2? |
�

&�
d| ei|t� i

k�
8 \|&

k� +_1&
i
k�

8 \|&

k� +&
&1

(B.32)

and |&#|&i=, with the limit = � 0+ implicit. These results are still exact.
They show that the transverse velocity field perturbations have two types
of dynamical response. One is hydrodynamic with relaxation on a hydro-
dynamic time scale t� s=z&1

s (k� ) which diverges as k � 0. The second is a fast
kinetic relaxation on the time scale t� m=1. Thus for long times and long
wavelength perturbations the hydrodynamic relaxation dominates and a
simpler hydrodynamic description is justified.

The analysis is similar for the response to more general initial pertur-
bations. Although there is not an exact scaling relation between the elastic
and inelastic cases, as in (B.29), it still follows that there is a separation
into short time kinetic and long wavelength hydrodynamic excitations. The
hydrodynamic excitations include the above d&1 shear modes, plus three
additional modes. For elastic collisions the latter are the two sound modes
and the heat diffusion mode. In the case of inelastic collisions these three
modes are more complex and do not necessarily have this same physical
interpretation. The hydrodynamic description will be presented in detail
elsewhere.

APPENDIX C. DETAILS OF RET KINETIC MODEL

In this appendix the steps leading to Eq. (5.10) are outlined. The
analysis follows that for the elastic case.(11) The first term on the right side
of (5.9) is calculated directly:

PJ$E[ f ]=PJE[ f ]&P
`
2

�
�v

} (Vf ) (C.1)
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The first term gives contributions from the collisional transfer parts of the
momentum and energy fluxes, Pc[r, v | f ] and qc[r, v | f ], just as in the
elastic case (although the functional forms differ, as indicated below). In
addition, the projection of JE[ f ] onto the kinetic energy gives rise to the
cooling term on the right side of (4.4). This is canceled exactly by the entire
contribution from the second term of (C.1), leaving

PJ$E[ f ]=&
;
n

flH _V{ : Pc[r, v | f ]

+
d

2c \
m;
d

V 2&1+({ } qc[r, v | f ]+Pc[r, v | f ] : {u)] (C.2)

with

Pc
ij=

1+:
4

m_d | dv1 | dv2 | d _̂ 3(g } _̂)(g } _̂)2 _̂i _̂ j

_|
1

0
d* /[r&(1&*) _, r+*_ | n] f (r&(1&*) _, v1 , t) f (r+*_, v2 , t)

(C.3)

qc=
1+:

4
m_d | dv1 | dv2 | d_̂ 3(g } _̂)(g } _̂)2 (G$ } _̂) _̂

_|
1

0
d* /[r&(1&*) _, r+*_ | n] f (r&(1&*) _, v1 , t) f (r+*_, v2 , t)

(C.4)

Here G$= 1
2 (v1+v)&u(r, t). The collisional transfer contributions vanish

at low density, but dominate at high densities. Similarly, the cooling rate
` for the RET is found to be

`=(1&:2)
m_d&1

4dnkBT | dv1 | dv2 | d _̂ 3(g } _̂)(g } _̂)3

_/[r, r+_ | n] f (r, v1 , t) f (r+_, v2 , t) (C.5)

The second term on the right side of (5.9) is replaced by the approximation

(1&P) J$E[ f ] � (1&P) *f (C.6)

The free parameter is divided into an average collision frequency plus a
velocity dependent perturbation,

*[v | f ]=&[ f ]+$&[v | f ] (C.7)
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where & is independent of the velocity. To suggest the choice for $&[v | f ],
consider the model collision operator evaluated at the local HCS state,
which can be written as

J$E[ flH] � J$E[ flH]&(1&P)($&(v) flH +J$E[ flH]) (C.8)

Use has been made of the property (1&P) &flH=&(1&P) flH =0. For
consistency in (C.8) we choose

$&(v)=&f &1J$E[ flH] (C.9)

The interpretation of *f is the change of f due to collisions that affect only
the component (1&P) f. There are two parts. The first represents an
average collision rate & depending on the local temperature and density.
The second represents an additional collision rate due to spatial inhomoge-
neities of the local HCS state (recall J$E[ fH] vanishes for the uniform
HCS). The latter is a collisional transfer effect associated with the difference
in position of the colliding particles.

The inclusion of $&(v) leads to a quantitative improvement of the
predicted transport coefficients. However, the price is an additional com-
plex velocity dependence, beyond the simple polynomial dependence of
PJ$E[ f ]. This undesired complication of the kinetic model can be
eliminated by retaining only the lowest order polynomial dependence of
(1&P) $&f. Closer inspection shows that the Chapman�Enskog solution
(to first order in the gradients) and transport coefficients depend only on
moments of J$E[ flH] with respect to two functions in the subspace of
(1&P), namely D(V) and S(V) defined in Eq. (5.12). Retaining only the
projections of $&f along these two functions gives

* � &&( flH � f )[A : D(V)+B } S(V)] (C.10)

where

A=
� dV DJE[ flH]
� dV flH D : D

, B=
� dVS JE[ flH]

� dV flH S 2 (C.11)

The resulting kinetic equation is given by Eqs. (5.10) and (5.11).
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